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Abstract 

This report describes the numerical procedure used to implement the Green’s 

function method for solving the Poisson equation in two-dimensional (r,z) cylindrical 

coordinates. The procedure can determine the solution to a problem with any or all of 

applied voltage boundary conditions, dielectric media, floating (insulated) conducting 

media, dielectric surface charging, and volumetric space charge. The numerical 

solution is reasonably fast, and the dimension of the linear problem to be solved is that 

of the number of elements needed to represent the surfaces, not the whole 

computational volume. The method of solution is useful in the simulation of plasma 

particle motion in the vicinity of complex surface structures as found in 

microelectronics plasma processing applications. This report is a stand-alone 

supplement to the previous Sandia Technical Report SAND98-0537 presenting the 

two-dimensional Cartesian Poisson solver. 



I. Introduction 

The fields about a prescribed distribution of electric charge are solved by 

superposition once Coulomb’s law is introduced. In general though, fields are 

specified in terms of known voltage boundary conditions, not charge distributions, 

which requires the solution of partial differential equations or integral equations. 1 

Finite difference techniques for solving the Poisson or Laplace equations are standard 

fare. They require numerical solutions covering the whole computation volume of the 

problem. An alternative method is to use the Green’s function for an unknown source 

distribution, with sources localized to the surfaces, and to formulate the solution as a 

Fredholm integral equation of f~st kind,2 which becomes a linear algebra problem 

once discretized. The advantage of the Green’s function technique is the smaller 

dimension of the array of surface unknowns as compared to the number of volume 

elements filling the whole computation volume. This is illustrated by considering a 

square of N elements on a side. The Green’s function method has 4N unknowns and a 

4N by 4N coupling matrix. A finite difference formulation would have N2 unknowns 

and a N2 by N2 matrix. However the latter matrix is sparse and numerical methods 

exist to take advantage of the sparseness. Another advantage of the Green’s function 

method is that volume grids are unnecessary in the absence of space charge and that 

the points of evaluation of the fields within the volume can be arbitrarily positioned. 

The Poisson equation (PE) in three dimensions (3D) for the potential field V 
due to a distribution of charge ~ is 

V2 V(R)= – p(E) I E. (1) 

where S1 units are used: namely, distance is in m, V is in volts (V), p is in C/m3, and 

the vacuum permittivity so is in C2/J m. The PE can be resolved by use of the free- 

space Green’s fimction: 1‘2 

Go(~,i?) =–1/4xii-~’, 

Vi Go(i,i’) = 63(ii-ii’), 

as 

(2) 
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V(i+ d3R’Go(~,ii’)p(i?) 
o (3) 

The form of GO is chosen to vanish at large distance analogous to the Coulomb field 

of a charged particle. Homogeneous solutions of the Laplace equation are not 

superimposed with the PE particular solution, because all fields are due to, or 

represented as, the superposition of real charges. This carries over to the 

representation of dielectric media, which are replaced by charged surfaces rather than 

a space-dependent permittivity, E(i). 

A point of importance in the application of the Poisson solver to plasma 

physics problems is the stiffness that is associated with the light electron mass and 

relatively high temperature. This is discussed in the Appendix of this report. 

II. The Two-Dimensional Poisson Equation in Cylindrical Symmetry 

The 2D PE in cylindrical coordinates with imposed rotational symmetry about 

the z axis maybe obtained by introducing a restricted spatial dependence into the PE 

in Eq.( 1 ) or the Green’s function solution as given in Eq.(3). The result is the 

conversion to 2D coordinates: 

m + p(~,z) = pm 
V(R) -+ V(r,z) =V(7). 

(4) 

Lower case 7 is used to denote a vector in (r,z) space. The new 2D Green’s function 

is the solution of2 



w co 

Ja!2r ~2(7,T’)-27rJrdr J~Z 62(?,7’)=1, 

o —co 

G(F,F’) = G(r,z;r’,z’) = &~d@ G.(~,~’), 

=--&~de((z-z’)2 +,2 +r’:-2rr’..s(@)_2’2. 

o 

(5) 

Note that the 2D integration and delta function have been defined with the 2Z 

included in the volume element. The last integral in Eq.(5) can be done analytically, 

resulting in a complete elliptic integral of the fust kind.3 This is only useful because 

these elliptic integrals have convenient numerical representations as low order 

polynomial approximations.3 

The 2D Green’s function defined in Eq.(5) may be reduced to 

G(r,z;r’,z’) = 
1 

– —D~~x K(m), 
2Z2 

D2 ~ax = (z –Z’)2 + (r + r’)2 = D&n +4rr’ 9 

D2 M.= (Z -2’)2 + (r– r’)2 9 

m=4rr’1 D&x , 

2 ,D2 ml =l–m=Dtin max” 

(6) 

Dma and Dmin are the maximum and minimum of the separation of the source and 

observation points as the azimuthal integration angle in Eq.(5) sweeps about the z 

axis. K is the complete elliptic integral of the frost kind, m is the “parameter,” and ml 

is the “complementary parameter.”3 The limits of the elliptic integral are known,3 



(7) 

These are useful in reconciling the formulae with the Cartesian Green’s function and 

in evaluating the near-field limit. As an example one finds: 

1 
G(r,z; r’,z’) = — 

[J 

In (z – Z’)2 + (~ – /)2 

47r2 r 8r 
) 

9 
(8) 

r+r’, z+ z’. 

This is similar to the 2D Cartesian Green’s function4, differing only by a factor of 

2n, and with the RI constant therein replaced by 8r in the present relation. The 2D 

cylindrical Green’s fhnction does not have the same singular properties at both large 

and small argument as the 2D Cartesian Green’s function: at large separation the 

cylindrical Green’s function decays like l/R just as the Coulomb potential due to a 

point source. 

The potential due to a volume distribution of charge is given by the 2D version 

of Eq.(3), namely: 

1 
V(7) =–=~d2r’ G(7,7’)p(F’). (9) 

o 

This distribution and potential are independent of the 6 coordinate. In the case that a 

surface charge is present, say 0(7), in units of C/m2, the appropriate potential is 

given by taking a zero-thickness or surface-delta-function limit of a volume charge. 

Let t be the local coordinate normal to the surface, which is located at t., then the 

substitution of 

p(~) = CJ(F)tJ(t - t,) (lo) 



will convert the volume charge integration in Eq.(9) to a surface integration. The 

solution to the surface-charge problem is given as the ID integral covering all 

surfaces: 

(11) 

where the 2D vector ?’ = 7’(s’) traces out the surfaces. The path of integration is 

along the surface, perpendicular to the local surface normal. 

It is also necessary to evaluate the electric field produced by all the charges. 

As the electric field is the negative gradient of the potential, the field can be evaluated 

from Eqs.(9) and ( 11 ). For the volume sources: 

(12) 

Of course the gradient must be evaluated in terms of the elliptic integrals in order to 

be useful. The general expression for ~ ~G is found to be: 

1 

[ 

T–T’ = E(m) – 

) 

~ (E(m) - K(m)) , 
2~2 Dmm D~in 2r 

(13) 

where the notation is as defined in Eq.(6) except that E(m) is the complete elliptic 

integral of the second kind.3 The limiting values of E(nz) are known: 

E(m) ---J-A. 

(14) 

Eqs.(9) and(11 ) for the potential, andEq.(12) for the field together with its analogous 

surface charge form, constitute all that is needed for the Green’s function Poisson 



solution. The remaining items to discuss are numerical representations and imposition 

of boundary conditions. 

III. Overall Structure of Solution 

The specification of the solution is done by means of voltage boundary 

conditions on conductors, typically metal surfaces. Metals are at a constant voltage,* 

but with an unknown charge distribution at the surface. These also include highly 

conductive plasma interfaces. All metals will have an unknown total and surface 

distribution of charge, except that floating or insulated metal parts will have a fixed 

total charge and an unknown charge distribution and voltage. Dielectrics will have 

unknown surface charges to modify the fields inside the media. This takes the form of 

jump conditions in the normal electric field at the dielectric interface surface. 

Boundaries that are markers for periodic reflections of the solution will have zero 

normal field conditions (periodic boundary conditions). 

One can see that it is necessary to break all surfaces into finite elements or 

increments in order to obtain an accurate numerical representation of the quantities 
that vary along the surfaces. Let all the elements be indexed by j, with the 

understanding that two materials in contact with a region of their surfaces in common 

will have just one set of elements in the common region. Each surface element will 

have a centroid at Tj, a length dsj, and a unit normal fi j. The total area of a surface 

element is 2~j d~ j, as the element is swept about the z axis. If there is a volume 

charge, the volume elements, which are really incremental cross sectional areas that 

are rotated about the z axis to form a solid ring, will be specified by the centroids 7j 

and the areas dAj, of incremental volume 2~j d4j. NO surface or volume element 

will be allowed to be centered on the z axis. It should not be necessary to do so. 

Some labels or partitionings will be introduced for the surface elements. 

Volume elements will be labeled by a “v” in all cases. The surface elements will be 

labeled with either an “m,” denoting a voltage boundary condition as on a metal 

including floating metals, a “d,” denoting a dielectric interface, or an “s” denoting an 

element in any of the surface partitions. The total number of elements in these 

partitions is N,, N~, Nd, and N,= N~ + Nd, 

Consider a system of voltage-specified metal surfaces with a given space 

charge in the volume. Together Eqs.(9) and (11) relate voltage at the metal surface 

elements to charges in the volume and on the metal. Without loss of generality, the 



integrals can be replaced by numerical quadrature or by sums over finite elements of 

the surfaces and volume to give the linear algebraic version of the system: 

(15) 

It is seen that the only unknowns in this linear system of equations are the charges on 

the metal elements, q~ . All the q; are defined as being the total charge (in C) on 

either a surface or a volume element, which are both 3D figures of revolution obtained 

by rotation about the z axis of the problem: 

(16) 

It is to be noted that the charges are no longer being represented as charge per length 

as in the 2D Cartesian method.4 There are as many unknowns, N~, as equations in 

this system described by Eq.(15). The exact procedure of discretizing Eqs.(9), (1 1), 

and (12) will be discussed in the next sections. Eq.( 15) constitutes a complete 

definition of the problem as formulated with potential boundary conditions and space 

charge. The solution of the linear system of equations for the unknown charges on 

each of the metal elements determines the fields everywhere in space. Note that the 

number of points involved in evaluating the space charge is not involved in inverting 

the coefficient matrix in Eq.( 15). The accuracy of the solution will be determined by 

the number and density of elements chosen on the surfaces and volume. The 

numerical solutions should converge to the exact solution as the density and number 

of elements increase everywhere. 

In contrast to the 2D Cartesian situation, there are no provisions made for 

periodic boundary condition to be applied in the 2D cylindrically symmetric case. 

Thus there is no “r” or reflective subset of the boundary finite elements. 

The remaining illustration is the dielectric match condition. This takes the 

form of an inhomogeneous condition on the normal field at each element on a 

dielectric interface: 



(17) 

jes jev 

The quantity Vid is of physical dimension V/m, the same as the electric field. Note 

that the matrix Gi,j is not the same physical dimension as the Green’s function G in 

Eq.(6), as the – 1 /So constant in the PE is now included. Gi,j is dimension of V/C 

and G is I/m. Also n GIS~ is dimension V/mC. In addition to describing the dielectric , 

match, the d partition also contains the effects of known added amounts of charge to 

the faces of dielectrics. This details of this will be given later. At the moment, the 

purpose is to illustrate the form of the total system of equations determining the 

solution. 

Write Eqs.(15) and ( 17) in vector matrix notation, suppressing the indices: 

This can immediately be rearranged to solve for the unknown charges, qs: 

(::](qs)=(;:)-(::)(.v) 

(18) 

(19) 

It is to be noted that the partitions contains the partitions m and d, all of which are 

surface elements with unknown charges. Only the partition m contains known 

voltages. The volume charges are known, as are added dielectric surface charges 

which will show up in the Vd terms. The dimensions of the vector-matrix quantities 

appearing in Eqs.( 18) and (19) are evident: the vectors V x and qx are columns of 

length N,, and matrices Gw are NX by NY. The partitioned matrix on the LHS of 

Eq.( 19) is thus square, with an equal number of unknowns and equations. 

9 



IV. Discrete Approximation of the Green’s Functions 

In this section the details of the formation of the linear system illustrated in 

Eq.(19) are given. The first item to be discussed in Section IV.A is typically the most 

universal of all the coupling terms. One should note that the evaluation of the 

potential or field at any particular surface element requires summation over all of the 

known and/or unknown charges in the system. Thus the coupling matrices are 

typically full, but also well conditioned,5 due to the nature of the Coulomb interaction. 

IV.A. Surface Potential Response to Surface Charge 

Consider the potential at a surface element labeled i due to a surface charge 

distribution. The point in question is a part of the surface itself. Begin with Eq.(1 1) 

and write the integral as a sum over surface elements. Within each elemental region 

of the ds’ integral, treat the charge as constant. At each point where the potential is 

to be evaluated, average the potential over the linear element. This leaves: 

The total chaxge on element ~, g j = 2~jdsj ~(7j ) has been introduced for each 

surface element as given in Eq.(16). Write Eq.(20) as 

(21) 

i~m 

to correspond to the vector-matrix notation introduced in Eqs.(15),(17)-( 19). Since 

the potential is only needed at the metal (m) elements, the range of i is restricted to the 
m partition. For i # j the sum-and-average integrals of the Green’s function over the 

finite element can be approximated as 

(22) 

10 



The RHS of Eq.(22) is to be evaluated from the formulae in Eq.(6), making use of the 

approximate numerical representation of the elliptic integral.3 This is valid if the 

surface is smooth, meaning that, approximately, ~ – Fj 2 d~i or ds~. A surface with 

sharp bends may need refinement of the incrementation. For i = j, the diagonal term 

in Eq.(20) requires a more precise evaluation because of the self-interaction 

singularity. 

The surface element self-interaction term can be approximated as follows. 

First, since the Green’s function is in the near-field limit, the form given in Eq.(8) can 

be used. Second, the integration and average over the surface element can be done as 

in the 2D Cartesian case if the dependence on the factor “r” is assumed to be weak 

compared to the variation of ? = 7‘ in the argument of the log function. The diagonal 

coupling term can now be reduced (with some algebra) to 

(23) 

In the case of a collinear line of equal-length surface elements, the largest relative 

errors introduced by approximating Eq.(20) by Eq.(22) are 10?6 for nearest neighbors 

and 2?Z0 for next-nearest neighbors, as derived by analysis of the sum-and-average 

integrals in Eq.(20). Although it is possible to improve the accuracy by use of 

coupling terms which depend on the orientation of the individual elements, it does not 

seem worthwhile, since a systematic reduction in error can be achieved by increasing 

the number and density of the finite elements. 

IV.B. Surface Potential Response to Volume Charge 

If there is a space charge in the system, the potential of that charge must be 

computed from Eq.(9) just as indicated in Eqs.(15) and (17). This involves no self- 

interaction terms in order to evaluate the potential on the metal surfaces, so the result 

can be approximated as previously done for the non-diagonal surface-surface terms: 

11 



(24) 

Any improvement in this result would involve incorporating information about the 

shape of the volume elements next to the surface. As it stands, one might refer to the 

result in Eq.(24) as a “wire-wire” interaction appropriate for the far-field of the 

interaction between the finite elements. 

IV.C. Imposition of Dielectric Matching Conditions 

The match conditions require the evaluation of the normal electric field at the 

boundaries of dielectrics. For this one must be able to compute the electric field from 

the surface and volume charges. Consider the field due to all charges in the system, 

both on surface and in volume, as given by Eq.(12) and its generalization for surface 

charge similar to Eq.(1 1): 

1 
@9=F!ds’9rG(i7)2zr’@) 

o 

1 
+ ;~d’r’ ~rG(7,7’)p(7’) . 

0 

(25) 

The gradient of the Green’s function is given in Eq.(13). Choose F to be arbitrarily 

close to the surface of point i, and dot the field with the unit normal of element i to 

find the component of field normal to that surface element. The result is: 

(26) 

12 



Approximate the integrals in Eq.(26) as sums of terms assuming that the charges are 

constant within each of the surface and volume intervals, as before. This allows the 

introduction of the elemental charges q; and q; . The result is precisely as 

symbolized in Eq.(17) with: 

11 
‘Gfj = —— J ds’ hi “ ~rG(~,7’) 

&o ds “ J dsj 

1- 
= “) —fii”vrG(~,Zi;~j>zJ 

&o 

i#j, i~d, j~s 

and 

. 
1- 

= “) . ‘l?i - vrG(~, Zi; rj, zJ 
E* 

(27) 

(28) 

self-interaction, but the surface- The volume sources are not concerned with 

surface coupling in Eq.(26) must be evaluated for that case. The integral is 

discontinuous as 7 is carried through the plane of the element. The analytic 

evaluation of the self-interaction term using the near-field approximation in Eq.(8) 

gives: 

(29) 

13 



with the positive sign when the unit normal points toward the “computational side” of 

the element. This is the same as knowing that the electric field about a sheet of 

positive charge points away from the sheet on both sides and has the magnitude 

c / 2s0 on each side.172 The averaging that was done previously in order to obtain an 

improved self-interaction term is not necessary here as the limiting values in Eq.(29) 

are obtained anywhere along the finite surface element. The * sign in Eq.(29) will be 

fixed at+ by setting up the unit normal vectors such that they point towards the 

computational side of the periodic boundary. 

Eqs.(27)-(29) fill in the definitions of the Grx partitions of the matrices as they 

appear in Eqs.( 15) or (17). A detail is the specification and storage of the unit normal 

vectors. Specifically arrays of the sin and cos of the unit normals are stored at the 

solution outset and used in the evaluation of the dot products when needed. 

The treatment of dielectrics provided here for the purposes of field calculation 

is that they are replaced with charged boundary layers at their actual surfaces. 1 These 

charged layers serve to modify the applied fields in order to obtain the correct field 

strength within the dielectric medium. It is true that there are fundamental reasons 

why the presence of dielectrics can be analyzed as a vacuum problem with inserted 

bodies of matter.1 Since the problems being addressed here are in electrostatics with 

homogeneous and isotropic media throughout, the formulation is particularly simple. 

Of course the whole problem is not homogeneous and isotropic. All dielectric media 

will be free of internal charge. The only distributed charge density occurs in the 

vacuum regions which can contain plasma space charge. The dielectric surfaces, 

whether between two dielectrics in contact or between a dielectric and the vacuum, 

will have an unknown amount of surface charge that is sufficient to produce the 

normal electric field discontinuity required by the macroscopic descriptions. In 

addition, a prescribed amount of deposited surface charge may be added to represent 

such charging of dielectric media in contact with a plasma. 

Consider, without loss of generality, the following lD problem in coordinate 

x. On the right side of the boundary, say for x >0, there is material 1 with 

permittivity (dielectric constant) El ; on the left, for x <0 there is material 2 with 

permittivity S2. Let the (x-component) electric field for x +0- be E< and the field 

forx+O+be E>. The fields are space dependent, so the values near the boundary 

are to be used. First consider the case with no added surface charge; the dielectric 

match condition is* 

14 



(31) 

&2 E<=&~E>. (30) 

A “polarization charge” a ’01 will be added to the surface to reproduce the jump. Let 

the field near the boundary be the sum of the fields due to all other sources evaluated 

at that point, say, E other 
, and the field due to a ’01. E ‘ther must be continuous 

across the boundary. Substituting into Eq.(30) gives: 

[ ‘the’-=) 

~2E<=E2 E 

( ‘s) 

= S1 E> = El EOther 

from which one solves for 0 ‘“~: 

E2 –&l ~Pol = 2C0 EO’he’ . (32) 
E2 +&l 

Now write down the expression for the normal component of the electric field at the 

above boundary, say element i, due to all other charges in the system: 

j=v 

normal must point towards In order for the sign of Eq.(33) to be correct, the unit 

positive x, in other words, from medium with S2 to medium with ~1. The ‘Gi~. 

matrices have been defined in Eqs.(27)-(29). Combining Eqs.(32) and (33) and 

PU1 = qld / dsi gives replacing 0 

15 



which is a homogeneous equation in the surface charges similar to the reflective 

boundary condition partition defined in Section IV.C. A convenient way of 

expressing Eq.(34) is to define the diagonal of the coupling matrix as: 

‘Gff = 1 
n &l +&z 

4Z2q Eo ~&~–~ . (35) 

i~d 

The limit of &2 -+ Cl gives a diagonal non-singular system in Eq.(34) and forces all 

qld + o ~ as it should” This comPletes the dielectric match? excePt for the inclusion of 

added surface charge. 

Let a deposited surface charge density, ~ati = qti / 2Z ~ dsi, be present on 

the boundary element. This added charge can be displaced away from the boundary 

surface by a infinitesimal amount and the previous solution for a dielectric match of 

an uncharged surface can be used again. The displacement must be towards the 

vacuum side of the interface to be consistent with a plasma charge deposition 

mechanism. In the lD model above this displacement is characterized by a i. Thus 

if the top sign is chosen, dielectric medium 1 is vacuum and ~1 =&o; if the bottom 

sign, Cz = ~0. The field symbolized by EOther is now the field due to the charges on 

all other surface and volume elements, plus the field due to the itilnitesimally- 

displaced added charge layer, namely T Cati / 2&.. 

element in question is the sum of the polarization and 

!? 
IJol + qa~ = qld . 

The charge on the surface 

added charges: 

(36) 

After eliminating q ’01 and using the permittivities to remove the ~ sign, one obtains 

Eq.(34) with an inhomogeneous term: 

16 



jcv 
j#i 

Of course the diagonal term on the RHS can be defined into the coupling matrices. 

The LHS of Eq.(37) is the i’th element of the column vector called Vd in Eqs.(17) 

and (18). 

This completes the construction of the linear algebraic equivalent of the 

integral equation to be solved for the surface charges. Still to do is the case alluded to 

as the most subtle of the tasks. 

IV.D Insulated (Floating) Conducting Bodies 

In the study of plasma interaction with surfaces, part of the conducting material 

in contact with the plasma can be with prescribed voltage and unknown charge, as 

dealt with earlier in Section IV.A. However a conductor that is electrically insulated 

will have a known (or determinable) total charge and an unknown voltage and charge 

distribution on its surface. This would seem to be a formidable problem in potential 

theory, but the numerical resolution in the context of the surface Green’s function 

methods is quite simple once unveiled. 

Rewrite Eq.(19) as 

(38) z Ai,j Xj = bi 

J 

square matrix of Gxs coefficients, x denotes the unknown 

qs, and b the whole RHS vector. Let each insulated 

subset of the “m” partition in the problem. Give each body a 

where A denotes the 

surface charge vector 

conducting body be a 

unique label say “k”. Let the total charge per length on body k be Q~. The 

incorporation of this information into the solution proceeds as follows: 

(i) Calculate all of the elements in A and b as if the insulated bodies are of 

specified voltage boundary conditions, as usual in the m partition. 

(ii) Search through the rows of A to find the first member of subpartition k. Say 

this happens to be row i. 

17 



(iii) Find the next member of subpartition k. Say that this is row n. 

(iv) Replace row i in A and b with 

Ai,j +Ai,j – An,j , bi +0 

for all j 

This relation incorporates the condition that the voltage difference between row i and 

row n (surface elements i and n) is zero, as must be true for a conductor. Remove row 

i from examination. 

(v) Redo the search for members of k, treating row n as the new row i. Repeat (iii) 

through (v) as long as members of k are found. 

(vi) If there is not another member of subpartition k, then replace row i in A and b 

with: 

i,j=l, j~k, A 

Ai,j =0, j~ k, 

bi =Q~7 

insuring specification of total charge on the subpartition k. 

The above must be repeated for all insulated bodies (all distinct k) in the 

system. One proceeds to solve this transformed A and b to generate the charges on 

all the surface elements. Note that no change in dimension or redoing of the 

interaction matrix element was necessary to carry out the insulated conductor 

modification. 

V. Evaluation of the Fields from the Charges 

The solution of the linear system of equations presented by Eq.( 19) is done by a 

full-pivoting Gauss-Jordan elimination code given in “Numerical Recipes”s. No 

problems with the numerical conditioning have been found for any well-formulated 

problem with up to 700 surface elements using 64-bit arithmetic. The computational 

time is slower with the larger dimensions, of course. 

Finding the potential and electric fields is based on evaluation of the integrals 

in Eqs.(9), (11 ), and (25) once the unknown surface charges are found. In the 2D 

Cartesian procedure4 the fields were at fust approximated by the same methods as 

presented in Section IV. However, it became obvious in that work that the results 

were not as smooth as expected near boundary surfaces. One cause of this is that the 

18 



evaluation “grid” or sample space is not necessarily related to the finite element setup 

for the surfaces or the volume charge, if there is one. Thus one can evaluate the fields 

very close to the surfaces, on the surfaces, or wherever. This difficulty was remedied 

in the context of the 2D Cartesian work by using the exact analytic field of a 2D finite 

element with uniform charge as the source term for all the charged surface elements. 

The more approximate treatment mentioned above is just a modified far-field 

approximation to this procedure. However in the cylindrically symmetric case being 

done here, there is no exact analytic solution for the field about a charged finite 

element that is a figure of rotation about the z axis. 

The resolution to this difficulty for the 2D cylindrically symmetric problem was 

to force a combination of the far-field solution of the cylindrical case with the near- 

field solution, which is the solution of the uniformly charged Cartesian finite strip. 

The far-field solution of a circular finite strip element is given precisely by the 

Green’s function in Eq.(6), being the field due to a delta function source (a circular 

charged wire). The fields about a uniformly charged Cartesian finite strip can be 

evaluated exactly.2>4 As mentioned previously though, the volume elements are of 

unspecified shape and thus not so amenable. The surface treatment for the potential is 

given now; the electric field is analogous. 

Consider a finite surface element stripj which is obtained by rotation about the 

z axis. This is a conic surface section. The potential due to this strip at the 

observation point 7 is Vj (7), the strip element’s width is ds ~, its unit normal fi j, 

and it is located at 7j, all specified in cylindrical coordinates. This uniquely specifies 

the cylindrical charge source element. Denote the functional dependence of the 

potential on the element parameters by 

Cs Vj(r, drj, zj,dsj,fij) ZV . (39) 

where cs denotes “cylindrical strip.” Now set up a local 2D Cartesian coordinate 

system on the element with the positive y axis along fi j and the x axis along d~j, ~d 

the origin at tj. These (x,y) coordinates area translation and rotation (by the angle e 

of the unit normal) of the cylindrical (r,z) ones. Thus V Cs can equally well be written 

in these coordinates. For convenience, replace the radius of the strip by the curvature, 

Cj = 1 / rj, imd denote the dependence of the potential explicitly on C’j ad d~j: 
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v cs ~vcs(cj,dsj). (40) 

In terms of these parameters, there are two useful limits. Consider the limit of small 

surface element width where the finite element reduces to a “circular wire” (CW) of 

charge: 

Cw 
Vc$(cj,o) -v . vcs(cj~dsj) dSj +0 (41) 

This is the far-field limit of the potential when 1? – ?j I is much greater than d~j but 

not necessarily greater than rj. The other limit is that of an “unrolled” cylindrical 

strip where the curvature is taken to zero: 

vcs(C’j~dsj) Cj+O >VCs(O,d~j)~VZs. (42) 

What results here is a “linear strip” (1s) of finite width and infkite depth (in the local z 

coordinate), for which the exact field solution is known simply in terms of the local 

(x,y) coordinates. This is a near-field limit which has a constant to be calibrated. The 

limit of the “linear wire” (lw) must also be used: 

Vcs(cj,dsj) ~ ~5 ~. )VCS(O,O) SVIW . 
J’ j 

The linear wire is the far-field solution to the linear strip when 

separation is much greater than the strip width. 

(43) 

the observation-source 

The approximation to be used for the field is to correct the near field of the cw 

by using the near field of the 1s: 

v ‘s =Vcw +Vzs –VIW (44) 

V ‘w is known exactly as given by the Green’s function in Eqs.(6) and (24). 

V‘s is known2’4 and the V lW can be obtained from it by taking the limit of zero 
width. If the (x,y) coordinates are scaled with ds ~, the result is: 
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1 

[[) 

dsj ~ 
v ‘s =— qf in— –1 

4~2 rj&o RI 

(45) 

+1~2xln((l/2-x) 2+y2) 

1 +1+42x ln((l /2+x)2 +y2) . 

q; is the total charge on the cylindrical element and RI is the constant that sets the 

zero of the potential field about an infkitely long (in z) x-y strip.4 The linear wire or 

far-field limit of Eq.(45) is found to be: 

lW = 1 

() 

17–7jl 
v– q; in 

47L2 rj&o RI 
(46) 

The difference of Eqs.(45) and (46) is localized in space to the vicinity of the strip and 

is the near-field correction. The correction contains quadruple and higher terms 

arising from a multipole expansion. Before using this, however, the constant R1 must 

be determined as it is no longer valid for the cylindrical geometry. This is done by 

comparing Eq.(46) with Eq.(8), which is the Green’s function giving the field of the 

circular wire in the limit that the distance from the wire is much less than the radius: 

1 

[) 

l~–~jl Cw ~ v– q; in gr , 
4~2 l“j&o j (47) 

l~–ljl<<rj . 

Thus RI is set to 8~j in order that the two limits agree. These formulae are used for 

the evaluation of the potential due to surface sources. 

The potential and field about a space charge element in the volume are difficult 

to evaluate because of the arbitrary shape. If the volume elements are modeled as 

being tori of circular cross section, the fields can be approximated using the far-field 
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limit in which the separation of the evaluation point and the torus is greater than some 

factor times the effective radius of the elemental cross sectional area ~j. Define the 

effective radius rx as: 

For 17 – Fj I > TX, set the potential due to volume element ~ to 

(48) 

(49) 

based on Eq.(6). For IF – Fj I < rx, the potential is approximated as a constant: 

Vj (F)= – 
1 

[m 

1 
in ~ –– ~q;> 

~Z2 rj&O 8rj 
(50) 

based on previous analysis, using the near-field limit in Eq.(8). 

The electric field is evaluated by much the same analysis as done for the 

potential. In other words the near-field correction to the “circular wire” is made by 

using the analytic formulae of the finite strip in (x,y) coordinates.4 Thus there is a 

correction of the same form as Eq.(44) made for each component of the electric field. 

The field about the cw is essentially given by Eq.( 13) and the correction is given by 

the gradients of Eqs.(45) and (46). The electric field due to volume (space) charge is 

represented by the cw solution when the separation from the volume element exceeds 

its radius as given in Eq.(48), and by a linearly decreasing function of separation when 

the separation from the centroid is less than the radius. This is not a perfect solution, 

but it is found to work well if one is careful about the location of the evaluation grid 

compared to the grid used to represent the volume charge. 

VI. Example Solutions and Discussion 

A few examples are given here show the good (and some not-so-good) features 

of the Green’s function method. The prior study of the 2D Cartesian solver4 contains 

illustrations that are also representative of the cylindrically symmetric solver. 
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The fust set of computations illustrated in Figs. 1-6 gives the potential and 

field around a disk capacitor as the number of finite elements is varied on the disks. 

The disk separation is 1.Om, the disk radii are 1.Om, the plotting field is 2m on a side 

with 50 points in r and 100 points in z, and the specified voltage is +0.5V on the upper 

disk and -0.5V on the lower disk. Fig. 1 shows a “wire mesh plot” of the potential for 

ten finite elements on each disk radius. Note that the total number of unknown finite 

elements is just twenty, and also that it was not necessary to include any elements on 

the cylindrical axis since the solution is done in cylindrical symmetry. Some spurious 

ripples are noted in the potential at the charged elements near the central axis and near 

the outer edge. A more accurate solution is found by including more elements within 

each disk radius. In Fig.2 the number of divisions on each disk radius is raised to 25. 

One notes that the ripples have disappeared. Convergence is confiied by the results 

in Fig. 3 where the number of finite elements on each disk is raised to 50. 

In Fig. 4 the E, component of the electric field is shown for the 50-element-per- 

disk case whose potential is given in Fig. 3. The small “bumps” in the field near the 

central axis are in fact errors due to the evaluation of the field in a region of both 

discontinuity in z and near r=O. Fig. 5 shows Ez for this case with 50 elements per 

disk. In Fig. 6 the magnitude of the field is shown as a contour plot to illustrate how 

the field is concentrated about the edges of the disks. The absolute value of the field 

in the central region approaches lV/m. 

The second set of computations is illustrated in Figs. 7-12. A spherically 

symmetric space charge with a Gaussian distribution in radius is used as the source. 

The l/e radius of the charge is 0.25m. The evaluation region is lm in radius, 2m in 

height z, and the elements for representation of the volume charge are on a 50 by 100 

grid in r and z. Fig. 7 shows the potential over the evaluation volume and Figs. 8 and 

9 show the components of the electric field, E, and E,. In Fig. 10 the potential is 

evaluated on a 50 by 100 grid with reduced spacing in the center of the full scale 

region. This is equivalent to a 2X magnification. The same is shown for E, in Fig. 

and Ez in Fig. 12. To be noted is that the evaluation grid in the volume is twice as 

dense as the gird used to represent the space charge. This forces the potential and 

11 

field evaluation to vary from the center to edge of the incremental volume elements as 

seen in Eq.(49) and (50) and their generalizations for the electric field components. 

The oscillation is primarily due to the replacement of the actual square cross section 

volume elements by the circular approximation as discussed in Section V. The 

practical rule to avoid the ripple shown in Figs. 11 and 12 is to simply evaluate the 

potential ardor the electric field on the same grid in the volume as used for the 
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representation of the charge density, with intermediate values obtained by 

interpolation. Figs. 7-9 show that this procedure gives smooth and eye-pleasing 

results. 

Any or all of the features of the PE solution discussed in Section IV can be 

combined in a single problem, including the presence of dielectric media and floating- 

potential, conducting bodies. 

Fortran implementation of this study as well as the prior4 Cartesian method is 

available from the author. Contact meriley @ sandia.gov by email for information. 
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Appendix 

There is one complication in using any PE solver with a space charge that must 
be discussed. Consider a parallel plate system with a space charge ~ between the 

plates, separated by L. This space charge will almost always be the difference 

between a positive ion density and an electron density --a plasma in other words. 

Suppose for the moment that the positive and negative charge densities are equal; thus 
there is no macroscopic charge and ~ is zero. Now solve the PE with a potential 

difference AV imposed on the plates. The field is just E = – AV / L, constant 

between the plates. Now consider the solution for the response of the particles to this 

field. The electrons will respond quickly, on a time scale of the electron plasma 

frequency,G 

ape =IIG%z (Al) 

which, if the plasma density is high, creates an extremely fast motion which must be 

resolved with a small time incrementation. Standard notation is used for the symbols 

in this Appendix. The system will eventually converge to a slowly evolving (quasi- 

steady-state) solution in which the bulk of the plasma has a very small electric field, 

with the presence of” ‘-—- ‘L -- -- ------ .:--- ---- AL- -1 ----- /- L-- *L.\ . ..L. AL -.. -,..-.1 

out the bulk electric 

Debye length: 

p~dSII~d lJlti”gC SC~~”ilLIUU> IICW” Ul15 ~lZILCS (SUtXIUIS) W1llG1l LZUIUG1 

field. The thickness of the regions of charge separation is the 

~~ = ~Eo kTe / e2 ne , (A2) 

which can be very small compared to the size of the bulk plasma region. In bulk high 

density plasmas, the electron mobility and diffusion may be shown to drive the electric 

field to an asymptotic value (ambipolar field), 

kTe ~ne 
E=–——. 

e ne 
(A3) 

This is a well known effect and numerical methods exist to help stabilize the 

solution.7’8 
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It should be mentioned that there is a commercial software package available 

for personal computers and workstations that uses the Green’s function method for 

solving the Poisson equation.9 Other versions are available for magnetics. 

Unfortunately the source code was not available so that modifications could be done 

to incorporate the features required in this study. This code uses refined finite element 

methods for resolving some of the problems related to the singularities of the Green’s 

functions. That code does not appear to allow for added surface charging of 

dielectrics, space charge, or insulated conducting elements. However the operation is 

by “graphical user interface,” which greatly facilitates problem definition and solving. 

26 



References: 

1. Leonmd Eyges, ``The Classical Electromagnetic Field,' 'Dover fiblications, Inc., 

New York, NY, 1980. 

2. P. M.. Morse and H. Feshbach, “Methods of Theoretical Physics,” Chs. 7, 10, and 

11, McGraw-Hill Book Co., New York, NY, 1953. 

3. M. Abramowitz and I. A. Stegun, eds., “Handbook of Mathematical Functions,” 

NBS Appl. Math. Series 55, U.S. Gov. Printing Office, Wash. D.C., June 1964, 

Ch. 17. 

4. M. E. Riley, “Two-Dimensional Green’s Function Poisson Solution Appropriate 

for Feature-Scale Microelectronics Simulations,” Sandia National Labs’ Technical 

Report SAND98-0537, March, 1998. 

5. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical 

Recipes,” Cambridge Univ. Press, New York, NY, 1986. 

6. D. C. Montgomery and D. A. Tidman, “Plasma Kinetic Theory,” McGraw-Hill 

Book Co., New York, NY, 1964. 

7. P. L. G. Ventzek, R. J. Hoekstra, M. J. Kushner, “2-Dimensional Modeling of 

High Plasma Density Inductively Coupled Sources for Materials Processing”, J. 

Vat. Sci. Tech. B. 12,461 (1994). 

8. M. J. Kushner, W. Z. Collison, M. J. Grapperhaus, J. P. Holland and M. S. Barnes, 

“A 3-dimensional Model for Inductively Coupled Plasma Etching Reactors: 

Azimuthal Symmetry and Coil Properties”, J. Appl. Phys. 80, 1337 (1996). 

9. “ELECTRO,” A two-dimensional Poisson solver sold by Integrated Engineering 

Software, 46-1313 Border Place, Wimipeg, Manitoba, Canada, R3H 0X4. 

27 



Figure 1. This is a “wire mesh plot” of the potential around a disk capacitor whose 

plates of 1.Om radius are separated by 1.Om.The potential boundary condition is +0.5V 

on the upper disk and -0.5V on the lower disk The plotting field is 2m on a side with 

50 points in r and 100 points in z. Here there are just ten finite elements on each strip. 

The small ripples in the potential near the center axis on the disks and at the outer 

edge of the disks is due to the limited resolution of the ten elements. These ripples in 

the potential cause even more noticeable ripples in the field (not shown). 
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Figure 2. Same as Fig. 1 except in the resolution of the charged disks. Here there are 

twenty-five finite elements on each disk. The potential at each disk is now more 

constant in accord with the imposed boundary conditions. 
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Figure 3. Same as Figs. 1 and 2 except in the resolution of the charged disks. Here 

there are fifty finite elements on each strip. The potential at each strip is essentially 

the same as in Fig.2 and demonstrates convergence at eye-resolution level. 
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Figure 4. The radial component of the electric field for the same physical problem as 

illustrated in Figs. 1, 2, and 3. Here there are fifty finite elements on each disk, the 

same as used for the potential shown in Fig.3. The small ridges that extend outward 

from the central axis are in fact errors near the axis due to the evaluation of the field in 

a region of both discontinuity in z and near r=O. 
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Figure 5. The z component of the electric field for the same physical problem as 

illustrated in Figs. 1-4. 
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Figure 6. A contour plot of the magnitude of the electric field given in Figs. 4 and 5. 

The value in the center of the plates approaches lV/rn. 
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Figure 7. This is a “wire mesh plot” of the potential due to a spherically symmetric 

space charge distribution whose radial dependence is a Gaussian with l/e radius of 

0.25m. The evaluation region in r and z is a lm by 2m box. The grid used for the 

representation of the space charge and for the evaluation of the potential is 50 in r by 

100 in z. The important point here is that the potential evaluation and the grid used to 

compute the space charge in the linear solution are the same. 
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Figure 8. This is a “wire mesh plot” of the r-component of the electric field 

corresponding to the potential of Fig. 7. The field is due to a spherical-Gaussian space 

charge distribution of characteristic radius 0.25m. The evaluation region is a lm by 

2m box. The evaluation grid is 50 by 100, the same as the grid used to represent the 

volume charge distribution. The important point here is that the grid used to compute 

the field evaluation and the space charge are the same. 
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Figure 9. This is a “wire mesh plot” of the z-component of the electric field 

corresponding to the potential of Fig. 7. The field is due to a spherical-Gaussian space 

charge distribution of characteristic radius 0.25m. The evaluation region is a lm by 

2m box. The evaluation grid is 50 by 100, the same as the grid used to represent the 

volume charge distribution. The important point here is that the grid used to compute 

the field evaluation and the space charge are the same.. 
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Figure 10. This is the same potential as shown in Fig.7 evaluated and shown on a 2X 

magnified scale in the center of the charge distribution. The point here is that the 

potential evaluation by Eqs.(49) and (50) use a finer grid than used to represent the 

space charge in the linear solution. This evaluation forces evaluation of the “self- 

interaction” volume terms to alternate between points near the volume centroid and 

the edge. This shows most dramatically in the field. 
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Figure 11. This is the r-component of the field corresponding to the potential as 

shown in Fig. 10. It is evaluated on a 50 by 100 grid and shown on a 2X magnified 

scale in the center of the charge distribution. The point here is that the potential 

evaluation by Eqs.(49) and (50) use a finer grid than used to represent the space 

charge in the linear solution. The field ripples are due to the alternate evaluation of 

the field at the center and at the edge of the finite elements, which are assumed to be 

of circular cross section, but are really squares. In the text it is recommended that 

field evaluations in the presence of significant amount of space charge be done on the 

same grid as used for the representation of the space charge. This avoids the effect 

shown here and, at least, gives a more eye-pleasing result. 
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Figure 12. The z-component of the field corresponding to the potential as shown in 

Fig. 10. It is evaluated on a 50 by 100 grid and shown on a 2X magnified scale in the 

center of the charge distribution. The point here is that the potential evaluation by 

Eqs.(49) and (50) use a finer grid than used to represent the space charge in the linear 

solution. The field ripples are due to the alternate evaluation of the field at the center 

and at the edge of the finite elements, which are assumed to be of circular cross 

section, but are really squares. In the text it is recommended that field evaluations in 

the presence of significant amount of space charge be done on the same grid as used 

for the representation of the space charge. This avoids the effect shown here and, at 

least, gives a more eye-pleasing result 
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